

Symmetries of Regular Polygons

A Solidify Understanding Task

A line that reflects a figure onto itself is called a line of symmetry. A figure that can be carried onto itself by a rotation is said to have rotational symmetry. A diagonal of a polygon is any line segment that connects non-consecutive vertices of the polygon.

For each of the following regular polygons, describe the rotations and reflections that carry it onto itself: (be as specific as possible in your descriptions, such as specifying the angle of rotation)

	Lines of Reflection	Points and Degrees of Rotation	Diagonals
Equilateral Triangle	How Many? 3	Amount Rotated: 180° us and Corder # 310°	How Many? ()
Square	How Many?	Amount Rotated: 90° 180°	How Many? 2
Regular Pentagon	How Many? 5	Amount Rotated:	How Many? 5

© 2012 Mathematics Vision Project | MVP In partnership with the Utah State Office of Education

Regular Hexagon	How Many?	Amount Rotated:	How Many?		
Regular Octagon	How Many? &	Amount Rotated:	How Many? 20		
Regular Nonagon	How Many? 9	Amount Rotated:	How Many? 17		

What patterns do you notice in terms of the number of the lines of symmetry in a regular polygon?

Number of sides = # LOK

What patterns do you notice in terms of the angles of rotation when describing the rotational symmetry in a regular polygon?

360

543