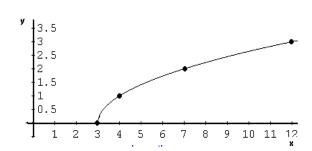

Mod 2 Test Review

- (a) Determine whether the following are linear, exponential, or neither.
- (b) Determine whether each relationship is continuous or discrete
- (c) Determine the domain and write it in set notation

2

۷.					
Rounds	1	2	3	4	5
Number of	64	32	16	8	4
players left					

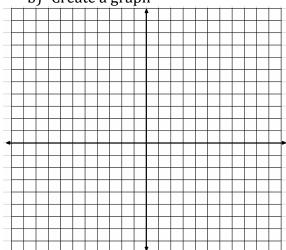

3.
$$f(x) = 2(5)^x$$

$$4. f(x) = 4x + 3$$

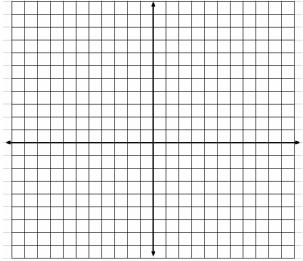
5

5.	
X	f(x)
3	-9
-7	-7
-2	-8
13	-11

6.



7.


• •	
X	f(x)
1	3
2	6
6	96
8	384

- 8. A water purification plant just installed a new pump that cleanses 4 gallons of water per minute. Suppose the plant already had 500 gallons of pure water when they replaced the pump and that the pump runs all day every day.
 - a) Create a table

b) Create a graph

- c) Create an explicit function
- d) Explain each piece of your function in part (c)
- e) Is the relationship linear or exponential?
- f) Is the relationship discrete or continuous?
- g) Is the relationship a sequence? Why or why not? If so, what type?
- 9. A sequence that starts with 2 and has a constant ratio that increases by 75% each term.
 - a) Create a table
 - b) Create a graph

- c) Create an explicit function
- d) Explain each piece of your function in part (c)
- e) Is the relationship linear or exponential?
- f) Is the relationship discrete or continuous?
- g) What type of sequence is the relationship above?

Determine whether the following relationships are linear, exponential, or neither. State the slope if linear or constant ratio if exponential.

10.
$$y = \frac{3}{4}x + 5$$

$$16. f(0) = 2, f(n) = f(n-1) \cdot 5$$

$$11.2x + 5y = 10$$

$$17. y - 7 = 3(x - 2)$$

$$12. y = 2 \cdot 5^x$$

18.
$$f(0) = 2$$
, $f(n) = f(n-1) - \frac{2}{5}$

$$13. f(x) = 3 \cdot 4^{x-1}$$

19.
$$y = -2x + 6$$

$$14.6x + 3y = 18$$

20.
$$y - 8 = \frac{3}{4}(x - 4)$$

$$15. f(x) = 3x + 1$$

$$21. \ f(x) = x^3$$

22. What are the requirements for a relationship to be a sequence?

23. Determine whether the following relationships are sequences or not. If so, state what type.

(a)	
X	F(x)
-2	3
-1	5
0	7
1	9

(b)	
X	F(x)
0	3
0.5	8
1	13
1.5	18

<u>(c)</u>	
X	F(x)
0	3
1	12
2	21
3	30
•••	•••

24. Is f(x) linear or exponential? Create a table for f(x) below:

X	f(x)
0	
1	
2	
3	

25. Is g(x) linear or exponential? Create a table for g(x) below:

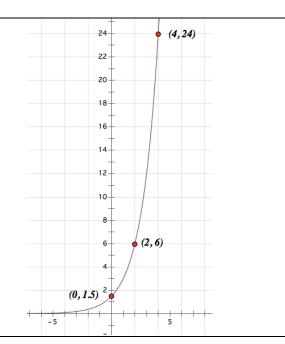
()
g(x)

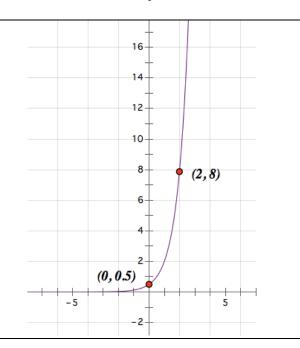
26. Create a graph that fits the following descriptions to help you answer #27 below.

(A) Create a graph with both a linear increasing function, and an exponential increasing function:	(B) Create a graph with both a linear increasing function, and an exponential decreasing function:	(A) Create a graph with both a linear decreasing function, and an exponential decreasing function:

27. Which relationship, out of linear or exponential, will have a greater rate of change in the long run?

 $28. \ Determine \ whether \ the \ following \ relationships \ are \ linear, \ exponential, \ or \ neither.$


<u>(a)</u>	
\boldsymbol{x}	f(x)
-1	2
1	4
4	6
5	8
9	10


b)		
	x	f(x)
	0	3
	1	6
	3	24
	7	384
	9	1536
	7	24 384

ij		
	х	f(x)
	0	-6
	1	-12
	2	-24
	4	-48
	6	-96

If you want bonus on the test, think about these...

- 29. Write the equation of f(x) shown in the graph below.
 - a) Then find the average rate of change of f(x) when x is between 1 and 4.
 - b) Draw in the secant line (the line that you are finding the slope of when x is between 1 and 4).
- 30. Write the equation of g(x) shown in the graph below.
 - a) Then find the average rate of change of g(x) when x is between 0 and 2.
 - b) Draw the secant line (the line that you are finding the slope of when x is between 0 and 2).

31. Let $h(x) = 3 \cdot 7^x$. Find the average rate of change of h(x) when x is between -1 and 5.