Mod 5 Review Honors

Name \qquad Period \qquad

1. What strategies have we developed to solve systems of equations?
> substitution Elimination Graphing
2. What strategies have we developed to solve systems of inequalities?

$$
\begin{gathered}
\text { * only way is by graphing } \\
\text { dy shadings }
\end{gathered}
$$

3. What does the solution set to a system of an equations look like?

4. What does the solution set to a system of inequalities look like?

The intersection of the two shaded
areas
5. How many solutions are there to a system of equations? Give a graphical example of each possibility.

6. How many solutions are there to a system of inequalities? Give a graphical example.

7. Solve the following system of equations using substitution and by graphing:
$\left\{\begin{array}{l}y=16-x \\ x-y=9\end{array}\right.$
show work for substitution below:

Mod 5 Review Honors

$$
\begin{aligned}
& 3 x+5 y=73 x \\
& -3 x-5 y=7-3 x
\end{aligned}
$$

8. Solve the following system of equations using elimination and by graphing;

$$
5\left(\begin{array}{l}
3 x+5 y=7 \\
5(2 x-3 y=11)+10 x-15 y=21 \\
\hline
\end{array}\right.
$$

Show work for elimination below

$$
\begin{aligned}
& \frac{19 x}{19}=\frac{76}{19} \\
& x=4 \\
& y_{z}^{\prime \prime}
\end{aligned}
$$

9. Solve the following system of equations using any method $3\left\{\begin{array}{l}2 x+6 y=18 \\ 3 x+2 y=13\end{array}\right) \quad 6 x+10 y=59$
$2(3 x+2 y=13)-6 x+4 y=26$

$$
\begin{array}{r}
3 x+2(2=13 \\
3 x+4=13 \\
44=4 \\
3 x=9
\end{array}
$$

10. Solve the following system of inequalities:

$$
\left\{\begin{array}{l}
y<3 x-1 \\
y \geq-2 x+4
\end{array}\right.
$$

shading:

$$
\begin{aligned}
& \text { check }(0,0) \\
& 0<3(0)-1
\end{aligned}
$$

Sha ting:

$$
\begin{aligned}
& o<-1 \text { False } \\
& \text { int. Tiv } m=
\end{aligned}
$$

$$
\begin{aligned}
& \text { cubing } \\
& \text { Chert a pint. Try }
\end{aligned}
$$

$$
(0,0)
$$

0
apr

$$
m=\frac{3}{1} \quad b=-1
$$

Mod 5 Review Honors

Solve each of the systems of equations below using an appropriate method (substitution or elimination) substitution

$$
y=-x+2
$$

$$
\frac{8}{4}=\frac{4 x}{4}
$$

$$
=-2+2
$$

$$
2=x
$$

$$
[(2,0)]^{0}
$$

Solve the following systems of inequalities.
13. $\left\{\begin{array}{ll}y \leq \frac{3}{4} x-5 & b=-5 \\ y>-2 x+1 & b=1\end{array} \quad m=\frac{-2}{1 \rightarrow+7} 7\right.$
check $(0,0)$ for shabingey

$$
\begin{aligned}
& 0 \leq 3) 4(0)-5 \\
& 0 \leq-5 \text { False }
\end{aligned}
$$

Checks 10,01 for shading
14. $\left\{\begin{array}{l}4 x+3 y \leq 24 \\ 6 x-9 y \leq 18\end{array}\right.$

Graph by finding x क y intercepts
to find x int of form find $4 x+3 y \leq 24$ put in 0 for y put $x=0$ then
$4(0)+3 y=24$ $\begin{array}{lll}4 x+310=24 \\ 4 x=24 \rightarrow x=6 & (6,0) & \end{array} \begin{array}{ll}4(0)+3 y=24 \\ & y=8(0,0)\end{array}$ $y=8(0,0) \quad \begin{aligned} & b x=18 \\ & x \geq 3 \\ & x=3\end{aligned}$
Circle the points that are solutions to the system of inequalities.

$$
\begin{aligned}
& \text { solution chang in } \\
& \text { or chang is to } y=m x+6 \\
& \text { similar } \frac{m}{2} 6 x-9 y \leq 1
\end{aligned}
$$

similar $\frac{0}{1} 6 x-9 y \leq 18$

15. $\left\{\begin{array}{cc}x+y>4 & 0+4>4 \\ 2 x+3 y \leq 12 & 4+1>4\end{array}\right.$ FanE
16. $\left\{\begin{array}{ll}y \leq \frac{1}{2} x-3 & 2 \leq \frac{1}{2}(-2) \\ x(-2) \\ y_{0} \leq 4 x-3 & 2 \leq-4 \\ \text { a. }(-2,2) & \leq \frac{1}{2}(2)- \\ \text { b. }(2,1) & \leq-2 \\ \text { (c. }(0,-3) & -3 \leq \frac{1}{2}(0)-3\end{array}\right]$
$-3 \leq-3$ TRUE $-3 \leq-3$ TRUE
Circle the points that are solutions to the system of equations.
17. $\begin{cases}y=\frac{1}{2} x-3 & 3=\frac{1}{2}(0)-3 \\ y=4 x-3 & 3 \neq-3\end{cases}$
a. $(0,3)$
b. $(10,2)$

$$
2=\frac{1}{2}(10)-3
$$

c. No solution
$2=2 v$
$1 \leq 12$ TRUE

$$
2+1>4 \text { false }
$$

18. $\begin{cases}y=3 x+7 & 0=3(0)+7 \\ y=-3 x-5 & 0 \neq 7\end{cases}$
19. $\left\{\begin{array}{l}y=-3 x-5 \\ y\end{array}\right.$
a. $(0,0)$

$$
(=3(-2)+7
$$

b. $(-2,1)$
c. $(-1,4)$
no solution listed $z=4(10)-3$
only one
solution
but there is Mise $2 \neq 37$
since scopes are different.

Mod 5 Review Honors
$m=-4 / 3$

$$
\begin{aligned}
& b>4 \\
& y<\frac{-4}{3} x+4
\end{aligned}
$$

$$
0 \leq-\frac{4}{3}(0)+4
$$

19. Write the system of inequalities that matches the following graph

20. When graphing an inequality what does a dotted line mean?

That we don't want to include the points
on the lime in the solution \rightarrow its just $>$ or $<$
Solve the following systems of equations by using a method other than graphing. Use whatever method is most efficient for the given system. Write your answer as a coordinate point. $x=y-1$ substitution
21. $\left\{\begin{array}{c}x=y-1 \\ -3\left[\begin{array}{l}x \\ x\end{array}+2 y=-1\right.\end{array}\right.$

Substitution
23. You are shopping at Walmart for popsicles. You want to get blue-raspberry and cherry -2 flavors. The blue-raspberry are bigger, so they cost $\$ 1.50$ each while the cherry are only $\$ 1$. Walmart is having a special and you get a free gift if you spend over $\$ 25$. You want to find all of the different combinations of popsicles that you could buy and get a free gift.
(a) Write an inequality for the situation above.

$$
X=\# \text { of BM R as Rasbewy }
$$

$$
1.5 x+1 y>25
$$

$$
y=\# \text { of chem }
$$

(b) Find all of the solutions to your inequality

(c) Are all of the solutions that you found in (b) viable?

No - only the positive anole number
(heck (0, 0) frs. shading $1.500+075$ o >25 False values in the shaded area mace sense.

$$
\begin{aligned}
& -3 y+3+2 y=-1 \quad \text { sine } x \\
& -y \pm 3=-1 \quad \text { then } x=4-1=3
\end{aligned}
$$

